DARPA Launches the COFFEE Program to Build Integrable High Frequency Filter Technology

DARPA Launches the COFFEE Program to Build Integrable High Frequency Filter Technology

The Defense Advanced Research Project Agency (DARPA) has selected research teams for their COmpact Front-end Filters at the ElEment-level (COFFEE) program, which seeks to create a new class of integrable, high-frequency filters with low loss, high-power handling, and seamless uniformity. The selected teams will be led by Northrop Grumman, Raytheon, Akoustis, BAE Systems, Metamagnetics, Georgia Institute of Technology, Columbia University, Carnegie Mellon University, University of Michigan, University of Texas at Austin and University of California at Los Angeles.

The COFFEE program will focus on creating an integrable filter technology to mitigate interference and maximize performance across a challenging S-band through Ku-band (i.e., 2 GHz to 18 GHz) frequency range. These filters must not only distill signals across the expansive frequency range, but do so while physically bound within an 18 GHz half-wavelength array pitch (i.e., 69 mm2, a space smaller than a dime). This new filter technology will account for digital-at-every-element advances – impacting each of an AESA’s hundreds or thousands of tiny antenna elements – for high-frequency systems facing increasingly unacceptable tradeoffs in size, weight, performance, and interoperability.

With the Defense Department-wide emphasis on electromagnetic spectrum superiority, our AESAs are tasked with a heightened demand for greater range, volume, and function. These demands are magnified by trends toward wider bandwidths and digitization at the level of the individual element,” said Dr. Benjamin Griffin, the Program Manager leading the COFFEE program. “There is very little room to integrate conventional filter technologies, exposing each element to the full bandwidth of potential threats. Today, there is no integrable filtering technology to meet these compounding requirements.”

The primary focus area of the program will leverage emerging microelectronics materials, integration, and design to build integrable filters, advancing new classes of miniaturized resonators as the building blocks. An additional, forward-looking focus area is oriented around millimeter-wave frequencies (demonstrating performance at 50 GHz), targeting fundamental limits of compact resonators beyond 18 GHz.

DARPA has been at the forefront of creating opportunities for multifunctional AESAs, with programs such as Arrays at Commercial Timescales (ACT),” Griffin said. “COFFEE is expected to establish an integrable filter technology for Defense Department AESAs, but this work will also have implications in commercial mobile sector advances expected in the near future.”

The COFFEE program, which is expected to run for 50 months across three phases – an 18-month base Phase I and two 15-month option phases – is a part of DARPA’s Electronics Resurgence Initiative (ERI) focused on advancing the U.S. semiconductor industry. The program addresses part of ERI’s focus on revolutionizing communications for the 5G era and beyond.

The Research will kick off in the spring of 2022.

Click here to learn more about the various mission-critical engineering services offered by DARPA.

Publisher: everything RF