Antennas that fail to meet specified design criteria, regulatory requirements or consumer satisfaction either rapidly find the scrap heap or cause costly delays. Designers therefore need to characterize an antenna to meet performance criteria including desired frequency, gain, bandwidth, impedance, efficiency and polarization. Traditional antenna characterization requires full-fledged far-field testing or gathering near-field data sets to project far-field patterns.
Unfortunately, the planar sampling mode, the fastest and least costly traditional near- or far-field technique, only generates reliable results for directional antennas. Omnidirectional antennas must currently be sampled in spherical mode in a sufficiently large shielded test chamber to overcome potential sensor coupling. For an omnidirectional antenna under test (AUT), such a system also requires a three-axis (X, Y, and Z) robot system and many sampling points. To overcome these hurdles, a novel very-near-field technology based on a probe array samples the AUT on a plane surface at a distance of 2.5 cm. The AUT can be either directional or omnidirectional.